Projective invariants of vector configurations
نویسندگان
چکیده
We investigate the Zariski closure of the projective equivalence class of a matrix. New results are presented regarding the matrices in this variety and their matroids, and we give equations for the variety. We also discuss the K-polynomial of the closure of a projective equivalence class, and two other geometric invariants that can be obtained from this. Résumé. Nous enquêtons sur l’adhérence Zariski de la classe d’équivalence projective d’une matrice. Des résultats nouveaux sont présentés sur les matrices dans cette variété et leur matroı̈des, et nous donnons équations pour la variété. Nous discutons également le K-polynôme de l’adhérence de la classe d’équivalence projective, et deux autres invariants géométriques qui peuvent être obtenus à partir de cela.
منابع مشابه
λ-Projectively Related Finsler Metrics and Finslerian Projective Invariants
In this paper, by using the concept of spherically symmetric metric, we defne the notion of λ-projectively related metrics as an extension of projectively related metrics. We construct some non-trivial examples of λ-projectively related metrics. Let F and G be two λ-projectively related metrics on a manifold M. We find the relation between the geodesics of F and G and prove that any geodesic of...
متن کاملProjective Reconstruction and Invariants from Multiple Images
This paper investigates projective reconstruction of geometric configurations seen in two or more perspective views, and the computation of projective invariants of these configurations from their images. A basic tool in this investigation is the fundamental matrix which describes the epipolar correspondence between image pairs. It is proven that once the epipolar geometry is known, the configu...
متن کاملRecursive Formulas for Welschinger Invariants of the Projective Plane
Welschinger invariants of the real projective plane can be computed via the enumeration of enriched graphs, called marked floor diagrams. By a purely combinatorial study of these objects, we establish a Caporaso-Harris type formula which allows one to compute Welschinger invariants for configurations of points with any number of complex conjugated points.
متن کاملInvariants of Points Seen in Multiple Images
This paper investigates projective invariants of geometric configurations in 3 dimensional projective space P, and most particularly the computation of invariants from two or more independent images. A basic tool in this investigation is the essential matrix defined by Longuet-Higgins ([10]), for this matrix describes the epipolar correspondence between image pairs. It is proven that once the e...
متن کاملReconstruction-Based Recognition of Scenes with Translationally Repeated Quadrics
ÐThis paper addresses the problem of invariant-based recognition of quadric configurations from a single image. These configurations consist of a pair of rigidly connected translationally repeated quadric surfaces. This problem is approached via a reconstruction framework. A new mathematical framework, using relative affine structure, on the lines of Luong and Vieville [12], has been proposed. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012